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ABSTRACT: A finite piece method is proposed to simu-
late three-dimensional slit flows in extrusion sheet dies in
this paper. The simulations concern incompressible fluids
obeying different constitutive equations: generalized New-
tonian (Carreau-Yasuda law), and viscoelastic Phan-Thien
Tanner (PTT) models. Numerical simulations are carried
out for the isothermal and nonisothermal flows of polymer
melt through sheet dies. The Picard iteration method is uti-
lized to solve nonlinear equations. The results of the finite
piece method are compared with the three-dimensional
(3D) finite element method (FEM) simulation and experi-
ments. At the die exit, the relative error of the volumetric

flow between the finite piece method and the 3D FEM is
below 1.2%. The discrepancy of the pressure distributions
does not exceed 6%. The Maximum error of the uniformity
index between the simulations and experiments is about
2.3%. It shows that the solution accuracy of the finite piece
method is excellent, and a substantial amount of computing
time and memory requirement can be saved. VC 2011 Wiley
Periodicals, Inc. J Appl Polym Sci 123: 3189–3198, 2012

Key words: polymer extrusion; viscoelastic properties;
simulations; PTT constitutive equation; the finite element
method

INTRODUCTION

The manufacture of plastic films and sheets is fre-
quently accomplished by using the so-called fish-tail
or coat-hanger dies, in which the polymeric fluid
flows through the gap with large ratio of width to
thickness. The slit flow is a typical problem for this
kind of dies. The main rheological concern in the
design of the channels is to obtain as uniform a melt
flow distribution as possible. Obviously, knowledge
of how a shear thinning and viscoelastic polymer
melts flow inside the various die sections is neces-
sary for proper design.

Traditional FEM can handle the 3D flow problem
of the polymer melt. In some of the numerical stud-
ies, the flows of the polymer melt in sheet dies have
been simulated using the 3D FEM to solve for the
pressures, velocities, and temperatures.1–5 Various
generalized Newtonian fluid models have been
included in these simulations. But an exact mathe-
matical analysis of viscoelastic flows in the dies is a
very challenging proposition because of the com-
plexities with geometrical and viscoelastic effects.

On the other hand, it can be justified that the
polymeric fluid motion follows the two-dimensional
(2D) Hele Shaw model6 between the gaps in the

sheet dies. The 2D simulations provide a computa-
tionally efficient alternative to the 3D methods.
Vlcek et al.7 used a control volume method to per-
formed a 2D simulation on the flow distribution in
slit dies. Liu et al.8 combined both the simple one-
dimensional lubrication approximation and the 3D
finite element simulation to design the extrusion
sheet die for viscoplastic fluids with a Bingham
model. Yu9 divided the flow regime into 2D and 3D
regions, and proposed a hybrid 3D/2D FEM to sim-
ulate motions of Carreau fluid. Moreover, noniso-
thermal flows in coat-hanger dies have been investi-
gated in some studies.10 Arpin et al.11 developed a
new model using a modified flow analysis network
method for the calculation of the 2D flow inside a
coat-hanger die, coupled with a finite-difference
scheme for the calculation of temperature. The die
body was also analyzed coupled to the melt flow
analysis to minimize the die-inlet pressure.12,13

Smith et al.14,15 performed optimization of extrusion
sheet dies by using a gradient-based optimization
algorithm to minimize the total pressure drop across
the die and reduce the velocity variation at the die
exit.
Among the constitutive models used in the poly-

mer flow simulation, the nonlinear PTT16 constitu-
tive equation provides a better fitting to the rheology
of polymer melts than other simpler models such as
power-law, the upper convected Maxwell or Old-
royd-B. And it is usually used to test the efficiency
of numerical method. The numerical study using
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this model was initiated with the simulation of 2D
and 3D steady contraction flow.17–21 More recent
studies consider 3D extrusion flows22 and 3D free
surface flows.23 But it is only used in some simple
flow channels of the 3D problems.

The channel of the sheet dies is wide and thin
gaps, and the primary focus of most sheet die
designs is the development of a uniform velocity
across the width of the die exit. In addition geomet-
rical complexity and rheological behavior lead to a
huge CPU and pro-process time required for 3D
simulations of viscoelastic flows in the dies. There-
fore a complete 3D analysis is unnecessary. In this
study, a finite piece method is established to predict
the isothermal and nonisothermal viscoelastic flow
through a planar slit channel. It is a finite element
semianalytical method which can be adopted to
reduce the computation memory requirement for 3D
problems. The mathematical model of the 3D flows
through the sheet dies is established with Carreau-
Yasuda and PTT constitutive model. The SU technol-
ogy24 is employed to improve the computation sta-
bility. The flows of LLDPE polymer melts in two
kinds of sheet dies are analyzed and the results are
compared with those from 3D FEM and Arpin’s
experiments.11

Governing equations

The flow is governed by the general equations for
mass and momentum. Considering the characteris-
tics of the polymer melts flow in a die channel, for
an incompressible fluid under creeping flow condi-
tions (Re ¼ 0), the motion equation and the continu-
ity equation are given by:

�rPþr � s ¼ 0 (1)

r �V ¼ 0 (2)

where P is the isotropic pressure, s is the extrastress
tensor, V is the velocity vector.

Rheological models of two types are adopted for
the simulations. For a non-Newtonian (generalized
Newtonian) fluid, s is expressed by the equation:

s ¼ 2gðIIDÞD ¼ 2gðIIDÞðrVþrVTÞ (3)

where D is the rate of strain tensor, the non-Newto-
nian viscosity obeys a Carreau-Yasuada law such that:

gðIIDÞ ¼ g0ð1þ ðk _cÞaÞðn�1Þ=a (4)

where _c ¼ ð2PDÞ1=2 and PD is the second invariant
of the rate of strain tensor. a, n, and k are constants.

For a viscoelastic fluid, the polymer extrastress
tensor can be splited into a purely viscous part and
a polymeric contribution:

s ¼ ss þ S (5)

here S is the extrastress tensor due to viscoelasticity
and ss is the stress component of pure Newtonian
fluid given by

ss ¼ 2gsD (6)

where gs is the Newtonian-contribution solvent vis-
cosity. To complete the description, a constitutive
equation that describes the rheology of the fluid is
required to determine the polymeric part of the extra
stress tensor. The constitutive equation for a PTT
fluid may be expressed as:

YðSÞSþ k½ð1� n=2ÞS
r
þðn=2ÞS

D
� ¼ 2gvD (7)

In the above equations, S
r

and S
D

denote, respec-
tively, the contravariant and the covariant deriva-
tives of the stress tensor:

S
r
¼ ðV � rÞS�rVT � S� S � rV (8)

S
D
¼ ðV � rÞSþ S � ðrVÞT þrV � S (9)

The stress function Y(S) follows the exponential
form:

YðSÞ ¼ expððek=gvÞTrS (10)

In the above equations, k is the relaxation time, gv

is the zero shear polymer viscosity. The total viscos-
ity g0 ¼ gs þ gv. PTT models have two scalar
parameters which can be used to control viscoelastic.
The parameter n governs the ratio of the first to the
second normal stress. The other parameter e imposes
an upper limit to the elongational viscosity, which
increases as this parameter decreases.
For the nonisothermal flow, the energy equation is

express as:

qCp
DT

Dt
¼ kr2T þ s : D (11)

where T is the temperature, q denotes the fluid den-
sity, k is the thermal conductivity, Cp is the heat
capacity. The temperature dependence of the viscos-
ity and the relaxation time is described by using a
shift factor A(T) and B(T). Accordingly, the viscosity
g0 and the relaxation time k are expressed in terms
of the temperature by means of the following
relations:

g0ðTÞ ¼ AðTÞg0ðT0Þ (12)

kðTÞ ¼ BðTÞkðT0Þ (13)
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In these equations, g0 (T0) and k (T0) denote the
respective viscosity and relaxation time at a refer-
ence temperature T0. The shift factor are given by11

AðTÞ ¼ exp C1
1

T
� 1

T0

� �� �
(14)

BðTÞ ¼ exp C2
1

T
� 1

T0

� �� �
(15)

where C1 and C2 are the WLF parameters.
For the slit flow channel, the size of thickness is

much less than others. We postulate the pressure
does not change along the thickness direction and
create Cartesian coordinate system which the Z axis
is along the thickness direction of the slit channel, as
shown in Figure 1, so the eqs. (1) and (2) can be
rewritten as the component type:

� @p

@x
þ @sxx

@x
þ @syx

@y
þ @szx

@z
¼ 0 (16)

� @p

@y
þ @sxy

@x
þ @syy

@y
þ @sxz

@z
¼ 0 (17)

� @p

@z
¼ 0 (18)

@vx
@x

þ @vy

@y
þ @vz

@z
¼ 0 (19)

Postulating the lower surface of the channel is h1
(x,y), the upper surfaces is h2 (x,y), the integral of eq.
(19) along the thickness isZ h2

h1

@vx
@x

dzþ
Z h2

h1

@vy

@y
dzþ

Z h2

h1

@vz
@z

dz ¼ 0 (20)

and defining the volumetric flow as follow:

qx ¼
Z h2

h1

vxdz (21)

qy ¼
Z h2

h1

vydz (22)

we obtain:

@qx
@x

þ @qy

@y
¼ vxðh2Þ @h2

@x
þ vyðh2Þ @h2

@y
� vzðh2Þ

� vxðh1Þ @h1
@x

þ vyðh1Þ @h1
@y

� vzðh1Þ
� �

ð23Þ

It can be found that the right end item is the nor-
mal velocity of the upper and lower surface which is
obviously zero, so the continuity equation related to
the volumetric flow is:

@qx
@x

þ @qy

@y
¼ 0 (24)

Numerical scheme

The length and width of sheet dies in the X, Y direc-
tion is much longer than the thickness in the Z direc-
tion, and a well-designed die shall provide smooth
and uniform flow in the X-Y plane. Thus the key issue
of the simulation is to acquire the flow distribution in
the X, Y direction. Since the flow without secondary
flow (e.g., vortex) is creeping, the flow channel with
varying thickness can be divided into several small
parallel regions (elements) of different height. The
flow inside the element can be assumed to be the
same as those inside the parallel flow channel; also
the velocity vz and extrastress Szz can be ignored.
Because the velocity and extrastress are still the func-
tion of the coordinate Z, it still remains to be a 3D
problem. The finite piece method which is one of the
finite element semianalysis methods with volumetric
flow as unknown variables will be utilized to calculate
the flow distribution of the X, Y plane. In this way, the
key issue mentioned above can be simplified to a 2D
solving procedure to obtain final solution.
For the finite piece method, the distribution func-

tions of the velocity vx, vy and the extrastress S ten-
sor related to the Z direction is assumed to be
known so that the finite element interpolating poly-
nomial can be constructed without the Z coordinate.
As the Fourier series can fit any continuous function
within the given region, it is easy to approximate
the curve by using the Fourier series. In other
words, the finite piece method is about to construct
an approximation function of the velocity and the
extrastress by using the finite element interpolating
polynomial in some directions and by continuous
smooth Fourier series fitting the boundary condi-
tions in other directions. Assuming that:

S¼
XR
k¼1

Skðx;yÞFkðzÞ¼
XR
k¼1

XM
i¼1

wiðx;yÞSki FkðzÞ¼
XR
k¼1

XM
i¼1

Wk
i S

k
i

(25)

Figure 1 Schematic diagram of the fish-tail die channel
and the coordinate system.
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V ¼
XR
k¼1

Vkðx; yÞFkðzÞ ¼
XR
k¼1

XM
i¼1

/iðx; yÞVk
i FkðzÞ

¼ PR
k¼1

PM
i¼1

Uk
iV

k
i ð26Þ

The pressure approximation function still is:

p ¼
XN
i¼1

uiðx; yÞpi (27)

In the equations, the velocity V include the com-
ponents vx and vy; the extrastress S include the com-
ponents Sxx,Syy,Sxy,Sxz,Syz; Fk(z) is Fourier series
which meet the boundary conditions in the thickness
direction; Ski , V

k
i are the nodal extrastress and veloc-

ity corresponding to the kth item of the series,
respectively; pi is the node pressure; wi (x,y), /i (x,y),
ui (x,y) are respectively, the shape function of extra-
stress, velocity, and pressure; Wk

i ¼ wi (x,y)Fk (z),
Uk

i ¼ /i (x,y)Fk (z); M is total number of the node
with stress and velocity; N is total number of the
node with pressure, R is the total number of the
term taken in the series.

In this article, we use quadrilateral elements with
a quadratic interpolation for the velocity and extra-
stress, a linear interpolation for the pressure field.
According to above ideas, the element can only be
divided in the X-Y plane, but the ‘‘element’’ is the
pieces 110220330440 with certain thickness of chan-
nels, as shown in Figure 2, thus it is called the
finite piece method. For the finite elements method,
the elements are connected by nodes but for the
finite piece method they are connected by lines, for
example 220, 330, and 440 in Figure 2. After the
approximation function of X-Y plane is constructed,
according to eqs. (25) and (26), the velocity and
extrastress distributions of the entire region can be
determined.

For a viscoelastic fluid (PTT constitutive equa-
tion), to overcome the effects of convection term the
inconsistent SU method24 is adopted here and an
additional term of the weighted function is
introduced:

�Wk
i ¼

�kV

ðV �VÞ � rWk
i (28)

the coefficient �k is defined by the velocity compo-
nents vn and vg at the element center:

�k ¼ ðv2n þ v2gÞ
1=2
.
2 (29)

The Galerkin weighted residual method is
adopted for the discretization of eqs. (1), (7), and

(24) where let residual value equal to Wk
i , U

k
i , and ui.

The additional term only affects the purely advective
term of the constitutive equations and the following
elemental equations are obtained:

Z
X

ðWk
i ðYðSÞSþ kðð1� n=2ÞS

r
þðn=2ÞS

D
Þ

�2gvDÞdXþ
Z
C

�Wk
i kV � rSdX ¼ 0 ð30Þ

Z
X

ðrUk
i ÞT � ð�pIþ sÞdX ¼

Z
C

tUk
i dC (31)

Z
X

uir � qdX ¼ 0 (32)

In the equations, t is the known surface force, q is
the volumetric flow.
The Picard iteration method is applied to solution

of above nonlinear equations. The algorithm of the
numerical method is described by a flow chart in
Figure 3. Indeed, let S(n), V(n), q(n), and p(n) denote
respectively, the values of polymeric stress tensor,
velocity, volumetric flow and pressure after last iter-
ation, we use below relation:

sðnþ1Þ ¼ SðnÞ þ gsðrVðnþ1Þ þ rVðnþ1ÞTÞ (33)

Substituting it into eqs. (31) and (32):

Z
X

 
� Pðnþ1Þ þ 2g

@v
ðnþ1ÞÞ
x

@x

!
@Uk

i

@x
dX

þ
Z
X

g

 
@v

ðnþ1Þ
x

@y
þ @v

ðnþ1Þ
y

@x

!
@Uk

i

@y
dXþ

Z
X

g
@dvðnþ1Þ

x

@z

@Uk
i

@z
dX

¼ �
Z
X

 
� Pþ @S

ðnÞ
xx

@x

!
@Uk

i

@x
dX�

Z
X

@S
ðnÞ
yx

@y

@Uk
i

@y
dX

�
Z
X

@S
ðnÞ
zx

@z

@Uk
i

@z
dXþ

Z
C

txU
k
i dC ð34Þ

Figure 2 The finite piece mesh with thickness H.
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Z
X

g

 
@v

ðnþ1Þ
y

@x
þ @v

ðnþ1Þ
x

@y

!
@Uk

i

@x
dX

þ
Z
X

 
� Pðnþ1Þþ 2g

@v
ðnþ1Þ
y

@y

!
@Uk

i

@y
dXþ

Z
X

g
@v

ðnþ1Þ
y

@z

@Uk
i

@z
dX

¼ �
Z
X

@S
ðnÞ
xy

@x

@Uk
i

@x
dX�

Z
X

 
� Pþ @S

ðnÞ
yy

@y

!
@Uk

i

@y
dX

�
Z
X

@S
ðnÞ
zy

@z

@Uk
i

@z
dXþ

Z
C

tyU
k
i dC ð35Þ

Z
X

 
@q

ðnþ1Þ
x

@x
þ @q

ðnþ1Þ
y

@y

!
/idX ¼ 0 (36)

Moreover, eqs. (34) and (35) are tenable only
when they are used inside the element. The velocity
values of the same nodes in different elements with

different thickness are not equal; however, the volu-
metric flow values are equal. Thus eqs. (34) and (35)
are converted into equations with volumetric flow as
the unknown variables to combine the element equa-
tions into a global equation.
In this article, we only use the first item of series,

so the velocity is given by following form:

vxðx; y; zÞ ¼ vxðx; yÞ sin
� p
H
z
�

(37)

vyðx; y; zÞ ¼ vyðx; yÞ sin
� p
H
z
�

(38)

H is the thickness of the channel, integrating along
the thickness, one obtains:

qxðx; yÞ ¼
ZH
0

vxðx; y; zÞdz ¼ 2H

p
vxðx; yÞ (39)

qyðx; yÞ ¼
ZH
0

vyðx; y; zÞdz ¼ 2H

p
vyðx; yÞ (40)

Substitute for vx,vy in eqs. (34) and (35) and change
Uk

i to Ui ¼ /i sin
p
H z
� �

, we can obtain following FEM
equations with the variable of volumetric flow.

Aijqxj þ Cijqyj �DinPn ¼ Xi (41)

Cjiqxj þ Bijqyj � EinPn ¼ Yi (42)

Djnqxj þ Ejnqyj ¼ 0 (43)

Xi and Yi are the right-side items of eqs. (34), (35) i
and j indicate the number of the velocity node, n is
the number of the pressure node, and:

Aij ¼ p
2H

Z
X

2g
@Uj

@x

@Ui

@x
dX

0
@

þ
Z
X

g
@Uj

@y

@Ui

@y
dXþ

Z
X

g
@Uj

@z

@Ui

@z
dX

1
A

Bij ¼ p
2H

Z
X

g
@Uj

@x

@Ui

@x
dX

0
@

þ
Z
X

2g
@Uj

@y

@Ui

@y
dXþ

Z
X

g
@Uj

@z

@Ui

@z
dX

1
A

Ckl
ij ¼

p
2H

Z
X

g
@Uj

@x

@Ui

@y
dX;

Din ¼
Z
X

un

@Ui

@x
dX; Ein ¼

Z
X

un

@Ui

@y
dX:

The unknown variable of eqs. (41), (42), and (43)
is the volumetric flow q. Because the volumetric

Figure 3 Flow chart of the computational procedure.
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flow is continuous at nodes, the global stiffness ma-
trix equation for all the elements can be assembled
after the elemental calculation.

By the finite piece method, we divide element
with thickness only in the XY plane. Compared with
3D FEM, the number of the elements becomes much
less, and the preprocessing becomes more simple.

The extrastress tensor S in Xi and Yi of eqs. (41)
and (42) is calculated by solving linear eq. (30). The
iterative algorithm is given by following form:

Z
X

ðWk
i ðYðSðnÞÞSþ kðð1� n=2ÞSðnþ1Þ

r
þðn=2ÞSðnþ1Þ

D

Þ

� 2gvD
ðnÞÞdXþ

Z
C

�Wk
i kV

ðnÞ � rSðnþ1ÞdX ¼ 0 ð44Þ

In the equations, S(n), V(n), and D(n) denote respec-
tively, the values of polymeric stress tensor, velocity,
and rate of strain tensor after last iteration. The
extrastress tensor is assumed to be following form
according to the boundary conditions:

Sijðx; y; zÞ ¼ Sijðx; yÞ sin
� p
H
z
�
; i; j ¼ x; y (45)

Sijðx; y; zÞ ¼ Sijðx; yÞ cos
� p
H
z
�
; i ¼ x; y; j ¼ z (46)

If the flow is nonisothermal, after the flow and
stress fields are solved, a second iteration loop is nec-
essary to calculate the temperature field by using a fi-
nite-difference method given by Arpin.11 The temper-
ature field is considered 3D and the thermal balance

includes convection in the X and Y direction, viscous
dissipation and conduction through the walls. Con-
duction in X and Y can be neglected. For the steady
flow, the energy eq. (11) can be written as:

qCp

�
vx

@T

@x
þ vy

@T

@y

�
¼ k

@2T

@z2
þ s : D (47)

The global algorithm is illustrated in Figure 3.

SIMULATIONS OF MELT FLOWS IN SHEET
DIES

Isothermal results

Because the simulations of fluids obeying PTT con-
stitutive equations are usually used to investigate
the accuracy and efficiency of the numerical tech-
nique, the isothermal flows of LLDPE in both the
fishtail and coat-hanger dies are analyzed respec-
tively, using PTT model and the results are com-
pared with the 3D FEM.
The Material parameters of LLDPE are given in

Table I.25 Boundary conditions are imposed accord-
ing to the extrudate flow characteristics in the chan-
nel. Average velocity for the required flow rate is
imposed at the entry section. The volumetric flow
rate Q ¼ 1 cm3/s. As for fully developed flow at the
exit section, velocity components perpendicular to
the die axis X and the traction force along the axis X
are specified to be zero. Nonslip condition is
imposed on the stationary solid wall. The symmetry
condition is imposed on the X-Z symmetry plane.
The major features of the flow for the fishtail die

have been given in Figure 1. A typical coat-hanger
die consists of a manifold and a slit section as
shown in Figure 4. The geometric parameters used
for the simulation are given in Table II and III. To
simplify the mesh of the coat-hanger die, the section
of manifold is treated as square. The simulating of
the 3D finite element is carried out using the method
given by Crochet.26 The finite element meshes for
the 3D approach are displayed in Figure 5 and 6.
Because of symmetry the flow in a quarter of the
channel is analyzed. The flow region is divided into

TABLE I
Material Parameters of LLDPE for PTT Model

Parameter gv (Pa s) gs (Pa s) k n e

Value 11830 1479 0.46 0.01 0.1

Figure 4 Schematic diagram of the coat-hanger die chan-
nel and the coordinate system.

TABLE II
Geometric Parameters of the Fishtail Die (mm)

W1 W2 L1 L2 T H1 H2

65 500 80 253 50 4 2

TABLE III
Geometric Parameters of the Coat-Hanger Die (mm)

D W L1 L2 T R H h

10 204 10 82 26 3.1 2.5 1
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3D elements by using mapping mesh generation
technology. The number of element divisions along
thickness is 4. To compare the results, the mesh of
the finite piece method is the same as that of the 3D
FEM in X-Y plane.

Comparisons of simulation results by the finite
piece method to the 3D FEM are shown. Figure 7
and 8 show the volumetric flow distributions qx/q0
in the lateral scan on the exit. Where qx is the flow
rate of unit width which is calculated according to
eq. (21), q0 is the average flow rate at the entry. By
comparison, we find that the results of the finite
piece method are in good agreement with the pre-
dictions of the 3D FEM. The discrepancy at all
points is less than 1.2%. Moreover, it can be seen
that the velocity profile of the coat-hanger die gets
flatter than the fishtail die. Figure 9 and 10 show the
volumetric flow distributions on the X-Z symmetry
plane (y ¼ 0). The predictions based on the finite pi-
ece method are quite close to those based on the
complete 3D simulation except at the contraction
mouth. And the discrepancies are restricted to a
small region. The discrepancies can be easily under-
stood because the flow channel with varying thick-
ness was divided into parallel regions for the finite
piece method.

Figure 11 and 12 show the contours of pressure
given by the finite piece method. The pressure distri-
butions on the X-Z symmetry plane based on the
two numerical approaches are plotted in Figure 13
and 14. The results of 3D FEM are the average pres-
sure along the thickness. By analyzing the results of
3D FEM, we found the discrepancies of pressure

along the thickness direction are less than 2%. It can
be concluded that it is reasonable to assume that the
pressure does not change along the thickness. We
observe that there is an abrupt variation in the trend
of pressure distribution near the contraction mouth.
Because of thinner channel, the pressure drop of
coat-hanger dies is greater than the fishtail die.
Overall, for two kinds of dies the pressure obtained
by the finite piece method shows satisfactory agree-
ment with the results of 3D FEM. It can be seen the
pressure predicted by the finite piece method is
slight smaller than 3D FEM but not exceeding 6%.
And the large discrepancies are restricted to a small
region. This can be explained by the fact that the
surface force components of wall in X,Y direction
are ignored, and only the first item of Fourier series
is utilized to approach the velocity distributions
along the Z direction. However, the pressure drop
caused by the shear viscosity in the slit region is
more significant than the normal stresses of the con-
verging section, and the surface force of X, Y direc-
tion has little influence on the results of the pressure

Figure 5 The 3D finite elements mesh of the fishtail die.

Figure 6 The 3D finite elements mesh of the coat-hanger
die.

Figure 7 Axial flow rate profile predicted by the finite pi-
ece method and the 3D FEM in the exit section of the fish-
tail die.

Figure 8 Axial flow rate profile predicted by the finite pi-
ece method and the 3D FEM in the exit section of the coat-
hanger die.
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for sheet dies. Accordingly there is a minor discrep-
ancy between the results obtained from the finite
piece method and the 3D FEM.

The most significant contribution of the finite
piece method is that a substantial amount of CPU
time and memory requirement can be saved. In this
article convergent criterion is set to 10�4 and the
computational data are shown in Table IV. It can be
seen that the number of the unknowns in the finite
piece method is far less than that of 3D FEM. This is
because the number of its elements is quarter for the
3D mesh and the unknowns of nodal velocity are
reduced from three to two (vz ¼ 0). Accordingly, the
memory requirement is significantly reduced, and
CPU time per iteration can be saved by more than
80%. We also found the number of iterations is very
close to that of the 3D FEM. This shows that it does
not decrease the rate of convergence to predict ve-
locity distributions by Fourier series.

Nonisothermal results

The simulations of LLDPE nonisothermal flows in
the coat-hanger die were carried out using Carreau-
Yasuda model also. The uniformity index27 and the
pressure drop are compared with the results from
Arpin’s experiment. The rheological coefficients of
LLDPE have been given in Ref. 11. The temperature
field is calculated by using a finite-difference
method. The boundary conditions are applied in
accordance with experiment. The die wall is
assumed to be adiabatic: @T

@z ¼ 0.
The uniformity index was created to analyze the

performance of flat dies which has been used up to
now. Computing the uniformity index is a good
qualitative comparison tool. Separating the die into

Figure 9 Axial flow rate profile predicted by the finite pi-
ece method and the 3D FEM in the X-Z symmetrical plane
of the fishtail die.

Figure 11 The contours of pressure in the fishtail die pre-
dicted by the finite piece method.

Figure 10 Axial flow rate profile predicted by the finite
piece method and the 3D FEM in the X-Z plane symmetri-
cal of the coat-hanger die.

Figure 12 The contours of pressure in the coat-hanger
die predicted by the finite piece method.

3196 LI ET AL.

Journal of Applied Polymer Science DOI 10.1002/app



N sections across the width, the uniformity index is
defined as:

U ¼ 1� 1

N

XN
i¼1

 
N
Qi

Q
� 1

!2
						

						
1=2

(48)

where Qi is volumetric flow through i-th section, Q
is total volumetric flow.

To investigate the sensitivity of the simulation
results with respect to the mesh size, we computed the
numerical solution on three meshes. The mesh data in
Table V comprise the total number of element and
node, degrees of freedom (DOF) and the minimum
mesh spacing normalized with the widthW (Rmin).

Figure 15 shows the numerical prediction for the
uniformity index as a function of the volumetric
flow rate in comparison with the experimental data.
The overall agreement of the uniformity index
between the finite piece method and the experiment
is good except for the individual point. The maxi-
mum error is about 2.3%.

The overall pressure drop versus volumetric flow
rate is shown in Figure 16. It can be seen that the

predicted pressure levels off at the highest flow rates
after an initial rapid increase, similar to the experi-
mental data. However, the pressure drop prediction
is smaller than experimental. With the increasing of
the flow rate, the discrepancy becomes larger, and
ultimately reaches 5.6% (M1).
We can observe in Figure 15 and 16 that the nu-

merical solutions obtained using the three meshes
are in good agreement. Using a mesh size (Rmin) of
0.0056 instead of 0.00167, which is one-third the size,
gives a uniformity index that is only 0.5% lower,
and the pressure drop increases by 2.8%. Moreover,
we can see that as the mesh is refined the numerical
solutions converge to the experimental data. The

TABLE IV
Comparison of Computational Data Between the Finite

Piece Method and the 3D FEM

Method

Fishtail die Coat-hanger die

3D
FEM

finite
piece

method
3D
FEM

finite
piece

method

Degrees of node 10 8 10 8
No. of node 3939 615 12621 1981
No. of element 736 184 2496 624
No. of unknowns 36531 4521 116984 14546
No. of iteration 22 23 25 27
CPU time(s) 946 207 3650 486
CPU time(s)/iteration 43 9 146 18

TABLE V
Major Characteristics of the Computational Meshes

Mesh M1 M2 M3

elements 624 1448 2472
nodes 1981 4503 7625
DOF(V, p) 4641 10534 17827
Rmin 0.0167 0.0084 0.0056

Figure 13 Pressure predicted by the finite piece method
and the 3D FEM in the X-Z symmetrical plane of the fish-
tail die.

Figure 14 Pressure predicted by the finite piece method
and the 3D FEM in the X-Z symmetrical plane of the coat-
hanger die.

Figure 15 Prediction of the uniformity index for the coat-
hanger die as a function of the flow rate in comparison
with experimental data.

POLYMER MELT FLOWS IN EXTRUSION SHEET DIES 3197

Journal of Applied Polymer Science DOI 10.1002/app



coarse mesh M1 leads to a larger uniformity index
and a smaller pressure drop. For this die, consider-
ing the sufficient accuracy and computationally cost-
effective, mesh M2 is a good comprise which corre-
sponds to 40 elements across the half-width.

CONCLUSIONS

In this study, a new finite element technique named
the finite piece method is proposed to simulate the
viscoelastic polymer flow in the sheet dies. In this
method, the distributions of velocities are
approached using the approximating polynomial in
the X-Y plane and Fourier series in Z direction. The
mesh is divided in X-Y plane, so the 3D flow prob-
lem is reduced to the 2D case.

Analyzing the behavior of the polymer melt flow
through the fishtail and coat-hanger dies has been
carried out by both the finite piece method and the
3D FEM. The results of the finite piece element are
compared with those of the 3D FEM simulations
and Arpin’s experiments. The solution accuracy is
excellent for most of the cases presented although
some assumptions were made to simplify the prob-
lem. The volumetric flow distributions obtained by
the finite piece method show satisfactory agreement
with that of 3D FEM. At the die exit the relative
error between the two methods is below 1.2%. There
is a minor discrepancy between the pressure distri-
butions obtained by the finite piece method and the
3D FEM. For the whole die, the discrepancies caused
by varying thickness of channel are restricted to a
small region, and it does not exceed 6%. For the fi-
nite piece method, the memory requirement is sig-
nificantly reduced, and CPU time per iteration can
be saved by more than 80%. The overall agreement
of the uniformity index between the finite piece
method and Arpin’s experiment is satisfactory
except for the individual point in which the error is
about 2.3%. The pressure drop prediction of the

finite piece method on the whole is not as close to
the experiment as to the volumetric flow distribu-
tions. The maximum discrepancy reaches 5.6% (M1).
It may be attributed to the following reasons: (1) the
material parameters in the constitutive equation are
not accurate enough. (2) Only the first item of Fou-
rier series is utilized to approach the velocity distri-
butions along the Z direction at high shear rates.
(3) Nonslip condition is imposed on the solid wall.
It is concluded that the finite piece method is

effective in simulating the slit flow in the sheet dies.
Owing to little demand on computational memory,
the finite piece method can be used to solve large-
scale 3D problems.
It can be inferred that the space slit flow can be

analyzed by the finite piece method too. One of fur-
ther work is to give the way to solve space problem
by this method. Furthermore, the finite piece method
combined with the 3D FEM to simulate the flow in
the complex 3D channel is another future issue.
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